COMMUTATOR THEORY IN STRONGLY PROTOMODULAR CATEGORIES Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

نویسنده

  • DOMINIQUE BOURN
چکیده

We show that strongly protomodular categories (as the category Gp of groups for instance) provide an appropriate framework in which the commutator of two equivalence relations do coincide with the commutator of their associated normal subobjects, whereas it is not the case in any semi-abelian category.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEMI - ABELIAN MONADIC CATEGORIES Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday . MARINO GRAN AND

We characterize semi-abelian monadic categories and their localizations. These results are then used to obtain a characterization of pointed protomodular quasimonadic categories, and in particular of protomodular quasivarieties.

متن کامل

GENERIC MORPHISMS, PARAMETRIC REPRESENTATIONS AND WEAKLY CARTESIAN MONADS Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

Two notions, generic morphisms and parametric representations, useful for the analysis of endofunctors arising in enumerative combinatorics, higher dimensional category theory, and logic, are defined and examined. Applications to the Batanin approach to higher category theory, Joyal species and operads are provided.

متن کامل

ON EXTENSIONS OF LAX MONADS Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

In this paper we construct extensions of Set-monads – and, more generally, of lax Rel-monads – into lax monads of the bicategory Mat(V) of generalized V-matrices, whenever V is a well-behaved lattice equipped with a tensor product. We add some guiding examples.

متن کامل

ON VON NEUMANN VARIETIES To Aurelio Carboni , on his sixtieth birthday

We generalize to an arbitrary variety the von Neumann axiom for a ring. We study its implications on the purity of monomorphisms and the flatness of algebras.

متن کامل

THE MONOIDAL CENTRE AS A LIMIT To Aurelio Carboni for his sixtieth birthday

The centre of a monoidal category is a braided monoidal category. Monoidal categories are monoidal objects (or pseudomonoids) in the monoidal bicategory of categories. This paper provides a universal construction in a braided monoidal bicategory that produces a braided monoidal object from any monoidal object. Some properties and sufficient conditions for existence of the construction are exami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004